
Project Plan

2.1 Project Management/Tracking Procedures

Our group plans to utilize an agile project management style. With the main goals of
the project being to successfully demonstrate embedded machine learning (ML) on an
interesting application and to make recommendations for incorporating embedded ML in a
course for the CPR E department, we will be able to break down the implementation of a
walking robot, our selected application, into tasks that can readily be completed in an agile
environment. We will utilize Github to track our progress throughout the semester.

2.2 Task Decomposition

1. Get linux running on robot, run a basic hello world (C++)
2. Define the Action and State structs/arrays

a. What values go in it and what they represent
b. This is based on what is available from the robot

3. Create interfaces for both the embedded and agent (C++)
a. This allows us to replace the agent easily without changing the application

main loop
4. Create general use logger (C++)
5. Implement embedded side (C++)
6. Implement Stretching agent - IE proves that embedded side works and test robot

joints if one is acting up (C++)
7. Implement NN agent (C++)
8. Implement application main loop - makes calls to interfaces, not to specific

implementation (C++)
9. Set up environment for training (Py)
10.Create virtual dog robot in MuJoCo (Py)
11. Create + train a model to walk using any prebuilt virtual robot- proof of concept

for training in virtual env using a prebuilt virtual robot such as the spider (Py)
12.Create + train a model to walk using our robot in virtual environment (Py)
13.Use model in NN agent class - actually trying the model in real life (C++ and Py)
14.Refine virtual environment to improve model as needed (Py)
15.Refine NN agent (C++) as needed - IE possibly modify the actions to account for

friction or something



2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

● Run basic “hello world” or similar program on the robot. (milestone). Evaluation: will
be considered complete when the program runs successfully and as expected with
no bugs.

● Completion of general use logger (milestone). Will need to distinguish between
different types of information/error types (evaluation criteria). Will need to be easy to
navigate for team members to easily find relevant data needed for debugging.

● Completing creation of virtual dog robot (milestone). Will need to accurately
represent the physical model, including range of motion and dimensions (metrics)

● Completing the training environment (milestone). This will need to include different
expected options that our robot will navigate through, will require us to sit down and
decide what are appropriate additions to place in training (metric).

● Train a NN capable of walking in the virtual environment (milestone)
● Use the NN trained in the virtual environment on the physical robot (milestone)

2.4 Project Timeline/Schedule

This schedule allows us to divide our tasks into sprints typically lasting two weeks.
Because we will be training virtually, much of the training can be done in parallel while work
on the robot is being done. We will divide our team into one group for starting the virtual
training process and another group for preparing to deploy our model on the robot. Towards
the end of the second semester, we will all be able to help refine the ML model. There may
need to be some training on the robot itself if the virtual training fails to accurately simulate
the real world.



2.5 Risks and Risk Management/Mitigation

Task Risk Risk
Probability

Risk Mitigation

Get linux running
on robot, run a
basic hello world
(C++)

Robot delivery is
delayed

0.2

Define the Action
and State
structs/arrays

Incorrect action and
state structs/arrays
defined

0.2

Create interfaces
for both the
embedded and
agent (C++)

Implementation of
interfaces takes
longer than
expected or doesn’t
work as expected
when using to easily
replacing the agent

0.1

Create general use
logger (C++)

Logger does not
work as expected

0.1

Implement
embedded side
(C++)

Inexperience of
team with
implementing
embedded side
especially with ML

0.5 To mitigate this risk, we will
seek external resources that
have implemented something
similar for assistance. We will
also account for the lack of
experience in our project
timeline by allowing for some
flexibility with this task if it is to
take longer.

Implement
Stretching agent

Trouble defining
what actions we
should specify

0.2

Implement NN
agent (C++)

Inexperience with
tensor flow and
loading a model

0.4

Implement
application main
loop

More complex than
we are predicting

0.3



Set up environment
for training (Py)

Environment is
harder to set up then
expected

0.8 Spend more time on it as
needed

Create virtual dog
robot in MuJoCo
(Py)

We can’t get the
data values we want

0.3 Figure out a way to convert
the available data values to
the ones we want by adding
additional broken down tasks if
necessary

Create + train a
model to walk using
any prebuilt virtual
robot- proof of
concept for training
in virtual env using
a prebuilt virtual
robot such as the
spider (Py)

Pre-built virtual robot
is significantly
different than our
robot

0.5 Research pre-built robot
thoroughly before selecting to
make sure it will align well with
how our robot works. If the
options for a pre-built virtual
robots are limited and none
align well with our robot, then
we can add additional tasks to
our project plan to convert the
pre-built implementation to our
robot.

Create + train a
model to walk using
our robot in virtual
environment (Py)

This tasks could be
more challenging
than we initially
expected, could take
more time than we
initially plan for

0.5 In order to reduce this risk, we
should allocate some extra
time for this task when
creating our project timeline

Use model in NN
agent class

The model set up in
the virtual world
does not align well
with the physical
world, causing the
completion of this
task to take longer

0.7 It is likely that some
modification will be needed
when transitioning from virtual
to physical environment,
therefore, we should account
for this upfront in our project
plan and allocate enough time
for refinement of the model.

Refine virtual
environment to
improve model as
needed (Py)

More refinement is
needed than
planned for, we are
unable to refine to
where we need to
be

0.8 To mitigate this risk, we are
planning to allocate a
significant amount of time
towards this part of the project.
We also will utilize our
resources to become as
educated as we can about our
application, NN’s, and ML in
order to reduce exposure to
this risk.



Refine NN agent
(C++) as needed

More refinement is
needed than
planned for, we are
unable to refine to
where we need to
be

0.7 To mitigate this risk, we are
planning to allocate a
significant amount of time
towards this part of the project.
We also will utilize our
resources to become as
educated as we can about our
application, NN’s, and ML in
order to reduce exposure to
this risk.

2.6 Personnel Effort Requirements

Task Person-
hours

Explanation

Interface robot with Linux 2h It's designed for it, should be easy

Create interfaces for both
the embedded and agent

2h These should be easy to write as we have
already discussed what they will look
like, though its not set in stone

Create general use logger 1h This is just a convenience class for
logging, should be some basic file
management

Implement embedded side 30h? We are unsure what this will look like so
we are allotting a significant amount of
time to figure it out

Implement Stretching
agent

4h Just has to implement a few functions,
can be a series of hard-coded actions

Implement NN agent 8h This is more complicated, we need to
read the docs for tensorflow to figure out
how to load and use a model in C++. Note
this does not include training the model,
only loading it and getting an output from
an input. We also will not be able to test
it until we have a model that can be
loaded.



Implement application
main loop

4h Well abstracted, this should only be a
few lines of code. May require some
additional arg parsing.

Set up environment for
training

10h Setting up envs in Python is notoriously
a pain

Create virtual dog robot in
MuJoCo

4h This might require a lot of file editing and
trial and error

Create + train a model to
walk using any prebuilt
virtual robot

15h Figuring out how to properly train a
model in MuJoCo will be a lot of learning
and experimenting

Create + train a model to
walk using our robot in
virtual environment

15h Once we have a virtual model of the dog,
and we have completed the above step,
training for the dog should be doable.
Training itself may take some time

Use model in NN agent
class

1h If we have the agent class done, and the
model done, we just need to load the
model into the agent class. Should just
be file transfer

Refine virtual environment
to improve model as
needed

TBD

Refine NN agent TBD

2.7 Other Resource Requirements

● OpenAI Gym: toolkit for training an agent using reinforcement learning
● MuJoCo: physics engine for building a virtual representation of our robot to train

with OpenAI Gym
● Tensorflow: machine learning framework used to design our models and deploy

them onto our robot
● Petoi Bittle: robot dog to deploy machine learning on.
● Raspberry Pi / microcontroller: Run ML model and interface with Petoi Bittle via

I2C.
● A Linux machine for training


